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Abstract. We analyse the problem of constructing global complex action-angle variables for
a class of HamiltoniansH(p, q) rational inq and quadratic inp.

We give a complete description of the monodromy of the action variables in terms of
subgroups of unimodular transformations associated to the singular energy points.

We also consider a peculiar subclass of Hamiltonian systems which are reducible to
algebraically complete integrable systems and show that the reduction preserves the symplectic
structure. As a consequence the monodromy of the action variable is induced by the one of the
reduced system.

Finally, we consider the problem of defining global angle variables. We propose to define
a set of angle variables which correspond to a group of Poisson structures associated toH.

1. Introduction

In this paper we construct complex action-angle variables for Hamiltonian systems with one
degree of freedom to which we can apply the powerful techniques of algebraic geometry, but
that are not, in general, algebraically completely integrable (see [4, 22]). For the construction
of action variables of ACI systems see [12, 16, 23].

Real action-angle variables are defined locally on compact invariant surfaces of
Liouville-integrable Hamiltonian systems (for definitions see [5]). The definition proposed
here of local complex action-angle variables is a straightforward generalization of the real
one and, in particular, it generalizes the definition of action-angle variables to the case of
real unbounded motions since we consider compactified surfaces associated toH = E .

Our main interest, however, concerns global properties of the complex action-angle
variables, since our motivation for introducing them and studying their properties for one
degree of freedom systems is to establish integrability criteria for higher degrees of freedom
systems. We remark that the study of monodromy properties of the action is preliminar to
integrability criteria for higher dimensional systems. Indeed, the strong connection between
real and complex dynamics has been widely pointed out in literature [7–10, 12, 20, 23–25]
and, in particular, Ziglin [24, 25] showed that the monodromy of the action variable of
an unperturbed system sets conditions on the integrability of a generic perturbation of the
Hamiltonian. We recall that there is also a global problem for real action-angle variables
[11, 15], which is not considered here.

The local action depends on the close cycle along which it is computed and, when the
system is not ACI, the local variable is not well defined globally. To solve these problems,
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we introduce a vector of angle variables and a complex matrix of actions computed on a
basis of cycles. In this way, we get a natural setting for characterizing their global properties.

The main result is the complete classification of the monodromy of the complex action
I with respect to energyE . In particular we show that the analytic properties of the action
matrix depend on subgroups of unimodular transformations of the associated period matrix
and, consequently, the action may be continued analytically but not single valuedly inE
allowing for a complete classification of the singular energy points which correspond to
singular curves (separatrices).

We consider one-degree-of-freedom systems, not only because their complex structure is
quite interesting, but in view of applications to higher-degree-of-freedom systems. Indeed
the approach considered here may be generalized to the corresponding multidimensional
situation thanks to the powerful properties of Abelian varieties and Abelian integrals.
Moreover, it is possible to apply the results presented here to Hamiltonians obtained by
perturbations of (1). Indeed, in some classes of perturbed non-integrable Hamiltonians the
local singularity structure is asymptotically conjugated to that of the corresponding integrable
unperturbed system (for results in this direction see [2] and references therein).

Finally, we remark that there are physically interesting systems—such as the Lagrange
top whose flow (see [20]) linearizes on elliptic curves—which may be studied along the
way proposed here. Indeed, we may study the analytic dependence of the action variable
associated to the elliptic curve in function of the three integrals of the system (the energy,
the angular momentum with respect to the figure axis and the direction of gravity) which
appear as parameters of the elliptic curve after the double reduction procedure. Of course
this description of the system will be quite complicated because each of these parameters
is allowed to vary inC.

In section 2 we introduce the local complex action angle variables, set conditions in
order that the angle variable be a holomorphic(1, 0)-form and classify action variables
according to their singularities onRE . In section 3 we define the global action-angle
variables and set, in particular, the monodromy properties of the action matrix in theorem 4.
In section 4 we consider some examples. In section 5 we consider action-angle variables
associated to reducible Hamiltonians, that is the exceptional but interesting case forg > 1
in which the local angle variable is well defined globally. We show that the rational
transformation associated to the reduction induces a symplectic change of coordinates and,
as a consequence, the monodromy properties of the reducible and reduced actions are the
same. Finally, in section 6 we consider some examples of reducible Hamiltonians.

2. Local action-angle variables

We consider rational Hamiltonians

H(q, p) = 1
2V0(q)p

2+ V1(q) (1)

where(q, p) ∈ C2, V0, V1 are rational inq. We suppose thatH has a canonical Poisson
structure. We shall release this condition in the next section where we introduce a family
of Poisson structures associated to the global angle variables.

Equation (1) is integrable in Liouville sense, but in general it is not algebraically
completely integrable (see [4, 22]). To the real bounded motions of (1), we may associate
real action-angle variables

I = 1

2π

∮
γ

p dq φ = dH
dI

∫
∂p

∂E dq. (2)
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We are interested here in the properties of the action-angle variables in the complex domain
(q, p) in the case in which the angle variable is a holomorphic(1, 0)-form. Let us denote

V0(q) = V N0 (q)

V D0 (q)
V1(q) = V N1 (q)

V D1 (q)
(3)

whereV D
0 , V N0 (respectivelyV D1 , V N1 ) are prime. Then,

∂p

∂E dq = Q(q)

u
dq (4)

where

Q(q) =
√
V D0 (q)W

D
1 (q)

u2 = 2(EV D1 (q)− V N1 (q))WN
0 (q)

(5)

andP(q) is the maximum common divisor betweenV N0 = P(q)WN
0 andV D1 = P(q)WD

1 .
Let n = 2g + 1 or n = 2g + 2, g ∈ N, be the degree ofu2 and let us consider the

hyperelliptic surface of genusg, generated by(q, u) and associated to the constant energy
surfaceH = E ,

RE =
{
(q, u) ∈ C2 : u2 = A0

n∏
i=1

(q − zi)
}

(6)

with A0 ∈ C and zi ∈ C being the roots ofu2 = 0 in (5). By construction,u represents
physically a velocity, since

dq

dt
= ∂H

∂p
= V0(q)p = u

and so,RE is the affine part of the hyperelliptic surface of genusg (see [6, 13, 21]) associated
to H = E in the configuration space variables(q, u). Except that for a finite number of
singular energy points, the rootszj of u2 are all simple. Such finite set corresponds to
separatrices which, in the following, will be called singular curves. After adding the points
at infinity, RE is a compact non-degenerate Riemann surface which can be represented as
a two-sheeted branched cover of the Riemann sphereC (see [21] for instance). In the
following we use the same symbolRE also for the compact Riemann surface associated to
(5).

To anyγ closed cycle inRE , we may associate a local action variable just using formula
(2) above

Iγ (E) = 1

2π

∮
γ

p(E, q)dq (7)

and the local angle variable

φ = dH
dIγ

∫ (q̄,ū)

(q0,u0)

∂p

∂E (E, q)dq (8)

where(q0, p0) ∈ γ is fixed,(q̄, p̄) ∈ γ and the integration path in (8) is entirely contained in
γ . Let us notice that∂H

∂Iγ is well defined sinceγ is fixed. The action-angle variables defined
in (7) and (8) are the direct generalization of the usual action-angle variables associated to
the real bounded motions ofH. In particular, (7) and (8) give action-angle variables
associated to the real unbounded motions sinceγ may be chosen as the representative in
the equivalence class corresponding to a real unbounded motion.
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In the physically interesting examples,φ is an integral of the first kind except at the
singular energy points, where dφ becomes a differential of the third kind (an Abelian
differential is a meromorphic(1, 0)-form on a compact Riemann surface and is called of
the first, second or third kind if it is holomorphic, has zero residues, does not satisfy an
additional condition, respectively (see [21] or [13])).

The following proposition sets the conditions for∂p
∂E (q, u)dq to be a holomorphic (1,0)-

form except at the singular energy points.

Proposition 1.Let H = 1
2V0p

2+ V1 be a Hamiltonian withV0 andV1 as in (3). Let

∂p

∂E (q, u)dq = Q(q)

u
dq

with Q andu as in (5). Then the roots ofu2 = 0 are all simple except at a finite number
of isolated singular energy points.

If degQ 6 g−1, then dφ is a holomorphic(1, 0) form onRE except on a finite number
of singular curves.

The proof is a direct consequence of the form (1) of the Hamiltonian, of the definition
of the angle variable and of the requirements onQ andu.

In the following, we consider Hamiltonians fulfilling proposition 1. We call the angle
defined in (8) local since the Abelian integral cannot be inverted, in general, ifg > 2.
Indeed, as it is well known,φ may take on arbitrary values if we change the integration
path keeping the endpoints fixed. In the next section, we use Jacobi inversion theorem and
introduce a vector of angles globally well defined.

We call Iγ an action of the first kind if it is the combination of complete Abelian
intergrals of the first kind; of the second kind if it is the combination of complete Abelian
integrals of the first and second kind; of the third kind in all other cases. In general the action
variable is a complete integral of the second kind. The following proposition accounts for
the remaining cases, which we consider here for completeness and for later use in examples.

Proposition 2.(a) LetH be as in proposition 1 and let degu2 = 2g + 1. Thenpdq is an

integral of the third kind if and only ifP has simple roots or

√
V D0
WD

1
is a rational function

with a nontrivial denominator.
(b) LetH be as in proposition 1 and degu2 = 2g+ 1 or 2g+ 2 andP ≡ constant. Let

V D0 = WD
1 T

2, whereT 2 is a polynomial with all roots of even multiplicity and

degV N1 + degT 6 g − 1
1
2 degV D1 + 1

2 degV D0 6 g − 1.
(9)

Then,Iγ is a complete integral of the first kind.

Sketch of the proof.Let us observe that the hypothesis degu2 odd in proposition 2(a) is not
restrictive up to a degree one rational transformation.

The proof of the above proposition is straightforward and amounts to a computation
using the following formulae

p dq = 2(E − V1)Q

u
dq. (10)



Global action angle-variables 1699

Since,Q =
√
V D0 W

D
1 andV D1 = PWD

1 , then

Q

VD1
= 1

P(q)

√
V D0

WD
1

. (11)

�

Remark 1.Let pdq be a differential of the third kind, then, according to (11), the simple
poles ofIγ do not occur among the roots (finite or infinite) ofu2 = 0. Let {(ai, bi)} be the
finite set of its simple poles onRE , thenγ in (7) is inRE ′, the Riemann surfaceRE except
for a regular pathwise-connected cut which passes once through each pole(ai, bi).

The main proposition of this section is the following one since it gives the dependence
of Iγ on γ and onzi ’s the roots ofu2 = 0. As a consequence we also get the dependence
of Iγ on E . The main application of the following proposition, however, will be in next
section where we characterize the monodromy properties of the action variable in function
of E .

Proposition 3.Let H be as in proposition 1 and degu2 = 2g + 1 or 2g + 2. Let
wj(γ ) =

∫
γ

dtj , j = 1, . . . , g, be a basis of integrals of the first kind computed along

the pathγ . Let ω̄(a,b)(c,d)(γ ) be the integral of the third kind associated to the logarithmic
singular points(a, b), (c, d) ∈ RE with residue normalized to+1 and−1 respectively.
Let ζ ν(a,b)(γ ) be the integral of the second kind with a single pole of orderν at the point
(a, b) ∈ RE and residue normalized to 1. Then the action computed along the cycleγ can
be expressed as

Iγ = 1

2π

∮
γ

p dq =
ī∑
i=1

Riω̄
(ai ,bi )

(ci ,di )
(γ )+

g∑
l=1

λlwl(γ )

+
∑
(ej ,fj )

[A1ζ
(1)
(ej ,fj )

(γ )+ · · · + Aνζ (ν)(ej ,fj )
(γ )] (12)

where
∑ī

i=1Ri = 0, (ai, bi), (ci, di), i = 1, . . . , ī are the simple poles ofpdq and(ej , fj )
are poles of orderν of pdq.

Moreover, the coefficientsRi , Aν , λl are polynomials which are symmetric in the roots
zj of u2 = 0 and invariant under permutations of the indices of thezi ’s.

Sketch of the proof.The proof of proposition 3 is a direct consequence of the fact that the
action is expressed as the sum of complete integrals of the first, second and third kind. The
coefficientsRi,Aν andλl are symmetric polynomials in the roots ofu2 = 0 by construction
due to the dependence ofp on (q, u).

The property of invariance follows immediately from the following considerations. By
linearity of the integral,Inγ+γ ′ = nIγ + Iγ , wherenγ + γ ′, n ∈ Z, denotes any path in the
corresponding equivalence class. As is well known, any unimodular transformation of the
period matrix induces a change of basis of cycles onRE and a well-defined permutation of
the rootszi ’s. Then, since equality must still hold in (12) after a unimodular transformation,
the coefficientsRi,Aν and λl cannot be affected by it, otherwise a contradiction occurs.
This can only occur if the coefficients are invariant under the permutation of rootszi ’s. �

In the following section, we show that closed paths in the energy plane are in one-to-one
correspondence with unimodular transformations and, then, we completely characterize the
analytical properties ofIγ as a function ofE .
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3. Global action-angle variables

We consider here the dependence ofIγ on E ∈ C and we propose a globally well-posed
definition of the angle variable onRE . We introduce a complex vector of angles and
associate to it the corresponding complex matrix of actions. The main consequence of this
definition is that the monodromy properties of the action matrix are expressed in an elegant
and closed form in theorem 4.

The situation concerning the local angle variable is more delicate. Indeed, changing
wisely the integration path,φ may assume any value ifg > 1. Anyway, from proposition 1
above, dφ is a holomorphic (1,0)-form. Since there existg independent such forms, we
may, formally, associate to each Abelian differential of the first kind the corresponding angle
variable onRE . The name local angle variables is meaningful, since each new variable
evolves linearly in a suitable rescaled time variable, as required for real angle variables.
Indeed, the passage from one local angle to another corresponds to a nonlinear time rescaling
transformation, which preserves the Hamilton equations, but not the symplectic structure of
the phase space. Then the global angle variables are defined as follows. To eachg-tuple of
independent(1, 0)-forms, there is associated ag-tuple of angle variables on which we may
apply Jacobi inversion theorem to obtainq andp as functions of the angle variables.

Each differential of the first kind dtj is a ‘time’ differential in our set-up. Let
(q, p)→ (q, pj ) be the change of variables such that

H(q, p) = Hj (q, pj ) = 1
2V

(j)

0 (q)p2
j + V (j)1 (q) (13)

and the local angle variable with respect to(q, pj ) is

∂pj

∂E (q, E) dq = dtj . (14)

With this construction, we getg independent local angle variables and the inverse
transformation from action-angle variables to the original(q, p) variables is well defined
globally. Leta ∈ C fixed, then a basis of holomorphic(1, 0)-forms is given by

dtj = (q − a)j−1

u
dq j = 1, . . . , g (15)

that is, there exists a uniqueg-tuple {cj } such that dt = ∑ cj dtj . From (14) and (15) we
get

(q − a)j−1

u
= Q

u

√
V0

V
(j)

0

so that, in (13)

V
(j)

0 (q) = Q2(q)

(q − a)2j−2
V0(q) V

(j)

1 (q) ≡ V1(q) ∀j = 1, . . . , g. (16)

Then pj = (q−a)j−1

q
p and the local action-angle variables with respect to the new time

differential dtj are

Ij,γ = 1

2π

∮
γ

pj dq = 1

2π

∮
γ

dtj
dt
p dq =

∮
γ

(E − V1)

πu
(q − a)j−1 dq

φj = ∂H
∂Ij,γ

∫ (q̄,ū)

(q0,u0)

∂pj

∂E dq = ∂H
∂Ij,γ

∫ (q̄,ū)

(q0,u0)

dpj
dp

∂p

∂E dq = ∂H
∂Ij,γ

∫ (q̄,ū)

(q0,u0)

dtj
dt

dt

= ∂H
∂Ij,γ

∫ (q̄,ū)

(q0,u0)

dtj .

(17)
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Let us notice that the symplectic structure of the phase space after the change of variables
is no more canonical in the old variables(q, p).

Let H be as in proposition 1, let dt ≡ dt1, . . . ,dtg be a basis of holomorphic(1, 0)-
forms and letγ ≡ γ1, . . . , γ2g be a canonical basis of cycles onRE or RE ′ according to
the remark after proposition 2. The matrix of actions is defined by

Ij,i = 1

2π

∮
γi

pj dq j = 1, . . . , g i = 1, . . . ,2g. (18)

It is made of integrals of the second kind, except when proposition 2 applies. In particular,
it is not restrictive to suppose that all the integrals are of the same kind (that is of the
first/second or of the third kind) forj = 1, . . . , g. Each action may be expressed as an
appropriate finite sum as in (12), where the basis of cycles is inRE if the action matrix is
of the second or first kind, inRE ′ is the action matrix is of the third kind.

By proposition 3, the coefficientsRi , Aν , λl are symmetric polynomials in the roots
of u2 = 0 invariant under permutations of such roots. Then the same unimodular
transformation of the period matrix and of the action matrix is associated to a permutation
of such roots. Let us show that to each singular pointE there is associated a well-defined
unimodular transformation of the action matrix and that the monodromy properties ofIj,i
in function ofE are given by subgroups of unimodular transformations. As a consequence,
we classify the singular curves and prove the analytical properties of the complex action
with respect toE .

Let us denote withUE the set of singular energy points and withGE the set of
transformations associated toUE in the following way. To each singular energy pointE we
associate two transformations (a matrix and its inverse), which correspond to the change
of the matrix of actions after a complete turn aroundE ∈ UE clockwise or anticlockwise,
respectively, excluding all other singular energy points.

Since a turn around a singular energy point corresponds to a well-defined root
exchange ofu2 = 0 and permutations of roots produce unimodular transformations of
the period matrix, by proposition 3, we conclude that the elements ofGE are unimodular
transformations.

Clearly, GE generates a subgroup of unimodular transformations which characterizes
completely the analyticity properties ofIγ in function ofE . Indeed, to each closed cycle in
the complex energy plane there is associated a uniquely defined unimodular transformation
given by a convenient composition of elements inGE . The converse is also true: to any
product of matrices inGE there corresponds a well-defined equivalence class of closed
cycles in the complex energy plane. In particular, the identity matrix corresponds to the
equivalence class of paths which avoid all singular points.

Indeed we have just proven the following.

Theorem 4.Let H be as in proposition 1 andI = {Ij,i}i=1,2g
j=1,g be the action matrix defined

in (18). Let UE be the set of singular energy points associated toH. Then a well-
defined unimodular transformation of the action matrix and its inverse is associated to each
element ofUE . The set of these transformations,GE generates a subgroup of unimodular
transformations in terms of which the monodromy ofI in function of E is completely
determined.

As a consequence, the action matrix is an analytic function ofE which may be
analytically continued but is not single valued onC− UE .

In the following and in the last section, we will consider some examples and compute
the unimodular transformations associated with them.
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We close this section by defining the complex angle variable as an angle vector
ψ̄(q) = (ψ1(q), . . . , ψg(q)) where

ψj(q) ≡ ψj,i(q) = ∂Hj
∂Ij,i

∫ (q,u)

(q0,u0)

dtj j = 1, . . . , g (19)

where i ∈ {1, . . . ,2g} is fixed. As usual(q0, p0) is fixed inRE . From Jacobi inversion
theorem, the complex angle variable is well defined globally on the complex Abelian torus
of dimensiong associated toRE and symmetric functions ofq are meromorphic functions
in the anglesψj ’s. In this sense we may invert equation (19). Moreover, each angle variable
ψj defines a local angle variable in the sense specified in section 2 which evolves linearly
with respect to the timescale dtj .

Let us notice that, the coefficient∂H
∂Ij,i is well defined since we have fixed an elementγ

in the set of closed cycles.
We call (Ii,j (E), ψj (q)), j = 1, . . . , g, i = 1, . . . ,2g, global action-angle variables.

From the above discussion it is clear that we may give a global complex characterization
of the Hamiltonian system using them.

4. Examples

Example 1.Let

H(p, q) = 1

2
p2+�q

2

2
− q

3

3
with � ∈ R+. Then the generic energy surface has genus 1; moreover in this caseu = p.
The singular energy points areE = 0, �

3

6 and become coincident for� = 0.

Sinceg = 1, for each regular energy, there is one differential of the first kind dt = dq
p(q,E)

and the canonical basis of cycles isγ1 = [z2, z3], γ2 = [z1, z2], wherezi , i = 1, 2, 3 are the
roots ofp2 = 0. With the notation [zi, zj ] we mean a cycle which turns aroundzi , zj once
and does not include the other roots and∞ point.

If � > 0 andE ∈]0, �
3

6 [, zi ’s are real and we order them as followsz1 < z2 < z3. The
action vector is then

Iγ1 =
1

2π

∮
γ1

pdq = 2i
√

2

15π
√

3
a

5
2
13{−(k′)2(2− k2)K(k)+ 2(1− k2+ k4)E(k)}

Iγ2 =
1

2π

∮
γ2

pdq = 2
√

2

15π
√

3
a

5
2
13{−k2(1+ k2)K′(k)+ 2(1− k2+ k4)E′(k)}

where

K(k) =
∫ π/2

0

dφ√
1− k2 sin2 φ

K
′(k) = K(k′)

E(k) =
∫ π/2

0

√
1− k2 sin2 φdφ E

′(k) = E(k′)

aij = zi − zj 0< k2 = z2− z3

z1− z3
< 1

ω1 =
∫ z2

z1

dq

p
= 1√

a13
K(k) ω2 =

∫ z3

z2

dq

p
= 1√−a13

K
′(k)

whereω1 and ω2 are the fundamental semiperiods associated toRE . Clearly Iγ1(k) =√−1Iγ2(k
′).
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First of all, the local action variable of the real bounded or unbounded motion in the
rangeE ∈]0, �

3

6 [ are the same:Iγ2. Indeed, [z2z1] is equivalent to [z3∞] on RE .
We now describe the monodromy properties of the action vector with respect to to

E ∈ C, when� > 0. As a consequence, we show the existence of the limiting action vector
whenE → 0 or E → �3/6, E ∈ C.

To start with, we restrict ourselves to real energies and take the limitE → 0 (k2→ 1)
and observe that, from the well known formulaeE(1) = 1, E(0) = π/2, K(0) = π/2 and
limk→0+ K′(k)− log(4/k) = 0,

lim
E→0+

Iγ1 =
3

5π
�2
√−� lim

E→0+
Iγ2 = 0. (20)

Let us now consider the analytical properties ofIγ with respect toE = 0. LetE = ε exp(iθ),
whereθ ∈ [0, 2π ]. A complete turn aroundE = 0 corresponds to an exchange between the
rootsz1 andz2. This induces the following unimodular transformation on the actions:

Iγ1 → Iγ1 + Iγ2 Iγ2 → Iγ2

which, actually, characterizes completely the nature of the singularityE = 0 for Iγ .
Moreover, from the form of this transformation, we get that

lim
E→0,E∈C

Iγi = lim
E→0+,E∈R

Iγi i = 1, 2

that is we define a meaningful complex action variable also in the degenerate caseE = 0
using (20).

In an analogous way, ifE → �3/6−(k2→ 0, real limit!), then

lim
E→�3/6−

Iγ1 = 0 lim
E→�3/6−

Iγ2 =
3

5π
�2
√
�.

The exchange between the rootsz2 andz3 induces the following unimodular transformation
on the actions

Iγ1 → Iγ1 Iγ2 → Iγ1 + Iγ2

and, as before, the complex action is well defined in the limiting caseE → �3/6, E ∈ C.
In general, to any possible combination of turns around the two singular energy points,

there corresponds a well-defined unimodular transformation of the actions given by the
corresponding composition of the generating unimodular transformations(

1 1
0 1

)
and

(
1 0
1 1

)
(21)

and their inverses. Since (21) generate the entire group of 2×2 unimodular transformations,
by theorem 4, an equivalence class of paths in the complex energy plane corresponds to
any unimodular transformation.

We now briefly consider the case� = 0 along the same lines as above. In this case
Iγ1, Iγ2 ≈ E

1
6 , as E → 0 and to any turn around the singular energy pointE = 0 there

corresponds a cyclic permutation of the rootszi . In particular,

Iγ1 → Iγ2 Iγ2 →−Iγ1 − Iγ2.

After three turns aroundE = 0 we obtain the identity transformation, and the set of possible
paths around the energy singularity is associated to the proper subgroup of unimodular
transformations generated by the matrix(

0 1
−1 −1

)
.
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Example 2.Let us consider a subcase of (1)

H(q, p) = 1
2p

2+ V (q) (22)

whereV (q) is a polynomial of degreen = 2g + 1 > 5. Then the genericRE has genus
g > 2. We choose the following basis of differentials of the first kind

dtj = qj−1

p
dq j = 1, . . . , g

and we fix a canonical basis of cycles onRE , γ1, . . . , γ2g.
The action matrix and the angle vector are given by

Ij,i = 1

2π

∮
γi

qj−1p dq j = 1, . . . , g i = 1, . . . ,2g

ψj (q̄) = ∂H
∂Ij,i

∫ (q̄,ū)

(q0,u0)

qj−1

p
dq j = 1, . . . , g.

In this case the action matrix is a complete hyperelliptic integral of the second kind with
poles at∞. Indeed, letζ (ν)(q, p;∞) be the integral which becomes infinite only at the point
∞ with principal partz

ν+1
2 , wherez is the local coordinate at the infinity point(q = z−2).

In our case,ν = 2, 4, . . . ,2(j + g + 1), and with the notationν = 2µ,

ζ (2µ)(q, p;∞) = 2µ+ 1

2

∫ (q,u)

(q0,u0)

qg+µQµ

p
dq µ = 1, . . . , j + g + 1

wherep = qg+ 1
2w, andw may be developed asw = a0+ a1

q
+ a2

q2 + · · · andQµ is a degree

µ polynomial in 1
q

given byQµ(q) = a0+ a1
q
+ · · · + aµ

qµ
. In particular we may express the

actions as:

Ij,i =
g+1+j∑
µ=1

δ(j)µ ζ
2µ(γi)+

g∑
l=1

η
(j)

l τl(γi)

where τj (γi) =
∮
γi

dtj . δ
(j)
µ , j = 1, . . . , g, µ = 1, . . . , g + j + 1 are degreeµ − 1

homogeneous polynomials in the roots ofp2 invariant under permutations.η(j)l , j =
1, . . . , g, l = 1, . . . , g are degreeg + j + l homogeneous polynomials in the roots ofp2

invariant under permutations of the variables.
The monodromy properties listed in the previous section for the action matrix may then

be calculated.
We end this example writing down the Hamiltonian expressed with respect to the time

scalings associated to the time differentials dtj . With our choice of the base of differentials
of the first kind,pj = qjp, j = 1, . . . , g,

Hj (q, pj ) =
p2
j

2q2j
+ V (q).

Example 3.Let a1, . . . , a5 be real and such thataj 6= 1, j = 1, . . . ,5; then the Riemann
surfaceRE associated tou2 = 2(E(q − 1)2 −∏5

i=1(q − ai)) has genusg = 2 for almost
any E . Let us consider the associated Hamiltonian

H(q, p) = p2

2
+ 1

(q − 1)2

5∏
i=1

(q − ai). (23)
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In this case, the local action integral is of the third kind and the local action-angle variables
are

Iγ = 1

2π

∮
γ

pdq =
∮
γ

dq
(E(q − 1)2−∏(q − ai))

πu(q − 1)

φ = ∂H
∂Iγ

∫ (q,u)

(q0,u0)

dq
q − 1

u
.

Let us choose as basis of differentials of the first kind dt1 = 1
u

dq, dt2 = q

u
dq. Let

γ1, . . . , γ4 be a basis of cycles onRE ′, obtained cuttingRE along a path connecting the
points(1,±√−∏ ai). Then, in the coordinates(q, pj ), j = 1, 2 the Hamiltonian becomes

Hj (q, p) = (q − 1)2

2q2j−2
p2+ 1

(q − 1)2

5∏
i=1

(q − ai)

and the action matrix and the angle vector are the following

Ij,i = 1

2π

∮
γi

pj dq =
∮
γi

dq
E(q − 1)2−∏5

k=1(q − ak)
π(q − 1)2u

i = 1, . . . ,4 j = 1, 2

ψj(q̄) = ∂H
∂Ij,i

∫ (q̄,ū)

(q0,u0)

qj

u
dq j = 1, 2.

The action matrix is then of the third type with two simple poles onRE in (1,±∏5
k=1(1−

ak)), and poles at infinity with principal partz
ν+1

2 whereν = 2, 4.

5. The case of reducible Hamiltonians

In this section we consider the peculiar class of Hamiltonians for which a local angle variable
φ is reducible to an elliptic integral of the first kind through a rational transformation ofq

of degreeη, whereη > 2. In this case,φ is a globally well-defined function ofq. Indeed
it takes a finite number,η, of values, as we arbitrarily change the integration path in (5),
and the inverse functionq(φ) is given by the composition of a rational function of degree
η with a meromorphic function.

Such reducible cases represent the direct generalization of the elliptic case for systems
with one degree of freedom and energy surfaces of genusg > 1. In this case, local and
global action variables coincide as for the caseg = 1.

We show that the change of phase coordinates induced by the rational transformation
is canonical and the symplectic structure is conserved. This observation has important
consequences for the monodromy properties of such reducible cases. Indeed, suppose we
have a family of reducible Hamiltonians depending analytically on a parameter (e.g.E),
then the monodromy of the reducible action vector may be described in terms of that of the
(reduced) elliptic action integral.

We start recalling two classical theorems which set up the reducible case, then we
consider the properties of the action-angle variables related to the reducible hyperelliptic
integral.

Theorem A (Briot–Bouquet) [19, 6, 17].Let

F(q̇, q) = 0 (24)

be an algebraic equation of two variables of degreem in q̇. Suppose that, around the
movable critical points, the equation takesη values, then only one of the following three
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possibilities is verified:q is an algebraic function oft, or q is an algebraic function of
exp(gt), or q is an algebraic function of snk2(gt), whereg andk are constant.

Let us denotef (q) = 1/q̇, whereq̇ is the algebraic function ofq defined by (24). Then
the case we consider here corresponds to the third possibility, when the independent periods
τ of the Abelian integralt = ∫ f (q) dq = J reduce to 2.

The equality

dt = du

g
√
(1− u2)(1− k2u2)

= f (q) dq

shows that the Abelian integral of the first kindJ (q) is the algebraic transform of∫
du

g
√
(1− u2)(1− k2u2)

.

In our set-up (H as in proposition 1), ifE ∈ C is regular,J (q) is an Abelian integral of the
first kind. So, in order to check that the angle integral admits a finite unknown numberη of
values, we have to show whether the corresponding Riemann surfaceRE of genusg > 1 is
the rational transform of a Riemann surface of genus 1. Such reducible Riemann surfaces
satisfy

Theorem B (Poincar`e–Weierstrass [6, 21, 22]).If there exists a system ofg Abelian integrals
of rank g, among which there is one that may be reduced to an elliptic integral, and if we
consider the corresponding theta function2, then:

(1) such a theta function withg variables is equivalent through a rational transformation
of degreeη to the product of a theta function of one variable and of a theta function of
(g − 1) variables.

(2) With a linear transformation the theta function2 may be changed to a form in which
the period matrix has the following form:

1 0 . . . 0 τ11 τ12 . . . τ1g

0 1 . . . 0 τ21 τ22 . . . τ2g
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 τg1 τg2 . . . τgg


where, as usualτij = τji , and periodτ12 is commensurable to one, while the periods
τ13, . . . , τ1g are all zero.

(3) In particular, letg = 2. Then, if there exists an integral of the first kind corresponding
to the algebraic relation

p2 = q(1− q)(1− k2q)(1− l2q)(1−m2q)

which has only two periods, it is possible to find a system of normal integrals whose period
matrix is (

0 1 G 1
η

1 0 1
η

G′

)
whereη is a positive integer.

Moreover, under such conditions, there exists a second integral of the first kind
independent from the first and which enjoys the same properties.
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In the following we call reducible a Hamiltonian which satisfies the conditions of
proposition 1 and such that the associated local angle variable is a reducible hyperelliptic
integral of the first kind. Then, there exists a degreeη rational transformation

x = Rη(q) (25)

such that ∫ (q,u)

(q0,u0)

Q

u
dq =

∫ (x,ρ)

(x0,ρ0)

dx

y
(26)

where, by constructiondx
y

is an elliptic differential of the first kind.
We now express the reducible Hamiltonian in(x, ρ), the conjugate coordinates

associated to (25), and show that such transformation is canonical. Indeed

H(q, p) = H̄(x, ρ) = 1
2U0ρ

2+ U1 (27)

whereρ satisfies the following compatibility condition

∂ρ

∂E =
1

y
. (28)

From (25), (27) and (28), we get that

U0(x) = V0(q)

(
dRη
dq

(q)

)2

U1(x) = V1(q). (29)

Sincex(q) is rational of degreeη there existη distinct inverse determinations. We fix one
of them and denote itq(x), With this convention, we may invert (29) and expressH in the
new coordinates.

Theorem 5.LetH be a reducible Hamiltonian andRη be the rational transformation between
q andx. Then toRη there corresponds a canonical change of coordinates(q, p)→ (x, ρ).

Proof. It is sufficient to show that the local action integral of the old Hamiltonian is
transformed into the global action integral of the new Hamiltonian

2πIγ =
∮
γ

pdq =
∮
γ

√
2(E − V1)

V0(R′η)2
(R′η)

2dq =
∮
γ̄

√
2(E − U1)

U0
dx =

∮
γ̄

ρ dx = 2π Ĩγ̄

(30)

whereγ̄ is the cycle on the elliptic surface associated toH̄ = E corresponding toγ . �

Equation (30) characterizes completely the analytic properties of the reducible action
vector when we have a family of reducible Hamiltonians. Indeed a straightforward
consequence of theorem 5 is the following.

Corollary 6. Let H(α) be a family of Hamiltonians depending analytically on the complex
parameterα and letH(α) be reducible in some complex domainα ∈ Vα. Then the
monodromy properties ofIα and of Ĩα are the same with respect to the singular points
α ∈ Vα.

In particular ifH is reducible in same domain ofE , we may equivalently study the
monodromy properties ofIγ directly or first consider the analytic behaviour of the reduced
actionĨγ ′ and then use equation (30) in order to get the monodromy ofIγ . In the following
section we apply corollary 6 to an example.
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It seems natural to believe that non-reducible Hamiltonian could be obtained as limit
of reducible ones, for instance, wheng = 2 taking a convenient sequence of Hamiltonians
Hη with η → ∞ in (25). In this way, however, the limiting Hamiltonian will not satisfy
proposition 1, since its period matrix is singular.

6. Examples of reducible Hamiltonians

We consider some examples wheng = 2. In this case, from theorem B, it is always possible,
in principle, to construct a reducible angle vector since there are two independent reducible
hyperelliptic integrals of the first kind. In the case of the examples we consider below both
integrals are explicitly known (see [6, 14] for other examples).

Example 4.The following integrals∫
dq√

q6+ Aq4+ Bq2+ C
=
∫

dx

2
√
x(x3+ Ax2+ Bx + C)∫

qdq√
q6+ Aq4+ Bq2+ C

=
∫

dx

2
√
x3+ Ax2+ Bx + C

(31)

are equivalent under the degreeη = 2 rational transformation

x = q2. (32)

Then

H = p2

2
+ q

2

2
− q

6

6
(33)

is reducible since its local angle variable is proportional to∫
dq√

2E − q2+ 1
3q

6
.

Equation (33), expressed in the new conjugate coordinates(x, ρ), becomes

H = 2xρ2+ x
2
− x

3

6
(34)

and the relation between action-angle variables in(q, p) and(x, ρ) is

Il,γ = 1

2π

∮
z
(s)
l ,z

(e)
l

p dq = 1

2π

∮
(z
(s)
l )

2,(z
(e)
l )

2
ρ dx

φl = ∂H
∂I(0)l,γ

∫ q

q0

dq√
2E − q2+ 1

3q
6
= ∂H
∂I(0)l,γ

∫ q2

(q0)2

dx

2
√

2x(E − x
2 + x3

6 )

.

In the above formula we suppose that the cycleγl goes once around the rootsz(s)l , z
(e)
l of

p2 = 0. Moreover, the inverse transformation, from(φ, Iγ ) to (q, p) is well defined since
q is the square root of a meromorphic function and so the local complex action angles are
also globally well defined.

We consider now the analyticity properties of the action vector with respect toE . The
original system has three singular energy pointsE = 0,± 1

3. p2 = 0, at E = ± 1
3, has two

couples of coincident roots; atE = 0 one couple of coincident roots. Below we show that
the singularityE = 0 is eliminable.

In this example it is quite easy to compute the monodromy ofIγ both directly and using
corollary 6. We use the following convention. Let us denote withai, i = 1, 2, 3 the roots of
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y3−3y+6E = 0. The roots ofp2 = 0 are then denotedei, i = −3,−2,−1, 1, 2, 3 with the
conventionei = sgn(i)

√
a|i|. The canonical basis of cycles isγ1 = [e−2, e−1], γ2 = [e1, e2],

γ3 = [e−3, e−2] and γ4 = γ3 + [e−1, e1]. Then Ij,γ1 = −Ij,γ2 = α andIj,γ2 = Ij,γ3 = β,
j = 1, 2.

In the reduced system (34), there are four rootszi , i = 1, 4 and we use the following
conversion table:z1 = a1, z2 = 0, z3 = a2 and z4 = a3. The basis of cycles is then
γ̃1 = [z2, z3] and γ̃2 = [z1, z2]. With these conventions it is straightforward to computeIγ
in function of Ĩγ̃ ; for instanceIγ1 = Ĩ[z3,z1] .

Let us start withE = 1
3. To a complete turn around this singular point, there corresponds

an exchange betweene±3 ande±2 which induces the following unimodular transformation
on the action matrix

−1 0 1 0
0 1 1 0
0 0 −1 0
0 0 −2 1

 .
We may also compute directly the unimodular transformations induced on the reduced action
Ĩγ ′ . Indeed a complete turn around the singularityE = 1

3 induces an exchange between the

rootsz3 andz4 and the following unimodular transformation onĨγ ′ :(
1 1
0 1

)
.

The effect on the reducible action matrix is the same as before, as it can be checked by
direct substitution, sinceIγ1 → β − α andIγ3 → β.

In an analogous way we may compute the monodromy properties with respect to the
singular energy pointE = − 1

3, to which there corresponds the exchange betweene±2 and
e±1 and the following unimodular transformation of the actions

−1 0 0 0
0 −1 0 0
−1 0 1 0
0 1 0 1

 .
In the reduced system, we use a different convention and associatez1 = a1, z2 = a2,
z3 = 0 andz4 = a3. In this way we have an exchange betweenz1 andz2 and the following
unimodular transformation for the reduced actionĨγ ′ :(

1 1
0 1

)
.

Then as before, in both cases,Iγ1 →−α andIγ3 → β − α.
Finally we consider the caseE = 0. Then in the reducible system we have an exchange

betweene1 ande−1, so that we expect thatIγi → Iγi . Indeed the unimodular transformation
is 

1 0 1 −1
0 1 −1 1
0 0 1 0
0 0 2 1

 .
In view of the reduced system, it is convenient to expressρ2 = 0 in Weierstrass normal
form. ThenE = 0 is a double root and it is easy to check that it induces the identity
transformation on the periods̃Iγ ′ as required. This is of course a trivial remark sinceE = 0
is a regular point of the reduced system.
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Example 5.A second family of reducible Hamiltonians may be obtained in the caseη = 3,
where∫

dq√
3(q3+ aq + b)(q3+ cq2+ d)

=
∫

dx√
x[4(3x − a)3− 27(b + cx)2]∫

qdq√
3(q3+ aq + b)(q3+ cq2+ d)

=
∫

dx√
x[4(c + 3bx)3+ 27(1− ax)2]

(35)

using, respectively, the degree three rational transformations

x = q3+ aq + b
3q − d

x = q3+ cq2+ d
aq3− 3bq2

(36)

where the coefficientsa, b, c, d must satisfy the compatibility conditiond = 4
3[ac + 3b].

Let us consider the following Hamiltonian

H(q, p) = 1

2
(3q3+ 12)(3q − 4)p2− q3+ 1

6q − 8
. (37)

It is easy to check that this Hamiltonian is reducible only forE = 0, for the choice of
parametersa = 0, b = 1, c = 0 d = 4 in the first of (36) and (37). It is of course possible
to compute the reduced Hamiltonian

H̃(x, ρ) = 54(x3− 1)ρ2− 1
2x

which is equivalent to (37) only in the caseE = 0. The angle integral is then proportional
to the first of (35) and the action integral is

Il = i

2π

∮
γl

dq

3q − 4

q3+ 1√
3(q3+ 4)(q3+ 1)

= 1

2π

∮
γ ′l

xdx

2
√

27x(x3− 1)
.

Notice that in this case both the reducible and the reduced actions are integrals of the third
kind.

Acknowledgments

We thank Giorgio Turchetti who encouraged us to consider this subject during the
accomplishment of the PhD thesis and Yuri Fedorov for many interesting discussions.
Example 2 has already been considered in [1, 3].

References

[1] Abenda S 1994 Analysis of singularity structures for quasi-integrable Hamiltonian systemsPhD ThesisSissa
[2] Abenda S 1997 Asymptotic analysis of time singularities for a class of time dependent HamiltoniansJ. Phys.

A: Math. Gen.30 143–71
[3] Abenda S and Bazzani A 1993 Singularity analysis in 2d complexified Hamiltonian systemsHamiltonian

Mechanics: Integrability and Chaotic Behavior (Nato ASI series B)ed J Seimenis (New York: Plenum)
[4] Adler M and van Moerbeke P 1989 Algebraic completely integrable systems: a systematic approach

Perspectives in Mathematics(Boston: Academic)
[5] Arnol’d V I, Kozlo v V V and Neishtadt A I 1987 Mathematical aspects of classical and celestial mechanics

in dynamical systems IIIEncyclopaedia of Mathematical Sciencesed V I Arnol’d (Berlin: Springer)
[6] Appell P and Goursat M 1979Theorie des Courbes Alg´ebriques, tome I revue et augmente´e par P Fatou

(New York: Chelsea)



Global action angle-variables 1711
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